Continuum model for chiral induced spin selectivity in helical molecules.
نویسندگان
چکیده
A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p(z) type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π(z) - π(z) coupling via interbase p(x,y) - p(z) hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.
منابع مشابه
Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling.
Recent observations of considerable spin polarization in photoemission from metal surfaces through monolayers of chiral molecules were followed by several efforts to rationalize the results as the effect of spin-orbit interaction that accompanies electronic motion on helical, or more generally strongly curved, potential surfaces. In this paper we (a) argue, using simple models, that motion in c...
متن کاملChirality-induced spin polarization places symmetry constraints on biomolecular interactions.
Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral int...
متن کاملCold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides bas...
متن کاملSpin-orbit coupling in nearly metallic chiral carbon nanotubes: a density-functional based study.
Spin-orbit interaction in carbon nanotubes has been under debate for several years and a variety of theoretical calculations and experimental results have been published. Here, we present an accurate implementation of spin-orbit interactions in a density-functional theory framework including both core and valence orbital contributions, thus using the full potential of the system. We find that t...
متن کاملChiral electron transport: scattering through helical potentials.
We present a model for the transmission of spin-polarized electrons through oriented chiral molecules, where the chiral structure is represented by a helix. The scattering potential contains a confining term and a spin-orbit contribution that is responsible for the spin-dependent scattering of electrons by the molecular target. The differential scattering cross section is calculated for right- ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 19 شماره
صفحات -
تاریخ انتشار 2015